
N9o-2o654

The Real Time Interactive Display Environment (RTIDE),

a Display Building Tool Developed by

Space Shuttle Flight Controllers.

Thomas A. Kalvelage

Rockwell Shuttle Operations Company

NASA Johnson Space Center

Houston,TX

ABSTRACT

NASA's Mission Control Center, located at Johnson Space Center, is

incrementally moving from a centralized architecture to a

distributed architecture. Starting with STS-29, some host-driven

console screens will be replaced with graphics terminals driven by

workstations. These workstations will be supplied realtime data

first by the Real Time Data System (RTDS), a system developed in-

house, and then months later (in parallel with RTDS) by interim and

subsequently operational versions of the Mission Control Center

Upgrade (MCCU) software package. The Real Time Interactive Display

Environment (RTIDE) was built by Space Shuttle flight controllers to

support the rapid development of multiple new displays to support

Shuttle flights. RTIDE is a display building tool that allows non-

programmers to define object-oriented, event-driven, mouseable

displays. Particular emphasis was placed on upward compatibility

between RTIDE versions, ability to acquire data from different data

sources, realtime performance, ability to modularly upgrade RTIDE,

machine portability, and a clean, powerful user interface. The paper

discusses the operational and organizational factors that drove

RTIDE to its present form, the actual design itself, simulation and

flight performance, and lessons learned in the process.

Key words: Space Shuttle, Mission Control Center, display

building tool, RTDS.

INTRODUCTION

The U.S. Space Shuttle is monitored and controlled from the Mission

Control Center (MCC) at NASAs Johnson Space Center (JSC) in Houston,

Texas. The flight controllers involved in realtime interaction with

the Shuttle work for the Systems Division of the Mission Operations

Directorate (MOD).

In the MCC, the Shuttle telemetry is fed into a large minicomputer

(the Telemetry Preprocessor Computer, or TPC). This machine

decommutates the stream and passes it to a mainframe, the Mission

Operations Computer (MOC). The MOC does simple limit checking and

drives all the displays used by the flight controllers.

17

PRECEDING PAGE BLANK NOT FILMED i)M_,,L___ mJura



Workstations are used in the MCC to process offline programs. Flight

controllers and support personnel have written many general and

discipline-specific applications for these machines.

INCO Expert System Project

John Muratore, a NASA flight controller, began the INCO Expert

System Project (IESP) in 1986 (INCO is the callsign for the

Instrumentation and Communication Officer front room flight control

position). This project's goal was to develop and test realtime

rule-based expert system applications in an operational environment,

i.e., during a Shuttle mission.

Because of safety considerations, the project could not use the MOC

or TPC. To get realtime shuttle telemetry into a workstation, a

Loral ADS-100 off-the-shelf telemetry processor was used. It

decommutated the data stream and passed the data to the workstation,

where it was moved to an applications interface with custom-built

software. This entire system was called the Real Time Data System

(RTDS), and it delivered realtime data to MCC workstations years

earlier than previously planned.

RTDS and a set of hand-built application programs were used

successfully on STS-26. These applications were certified for use in

making critical flight calls during ascent.

Im___act of Earl Z Delivery of Realtime Data to Workstations.

To begin exploring the possibilities of improved displays, it was

decided to remove a few MOC-driven CRTs from consoles and replace

them with RTDS-driven graphics terminals.

The author, as a flight controller whose primary CRT was to be

replaced, and as an IESP applications programmer, volunteered to

write a few specific display applications. The original intent was

to hand-code one or two narrowly focussed applications.

The idea of replacing CRTs with workstation terminals gained favor,

and more CRTs were scheduled for replacement, including one of the

INCOs CRTs. The INCO is a primary, front-room flight controller, and

needs to monitor a large number of systems. It would be impractical

to hand-code all the displays the INCO would need, so the author

began building a tool (called the Real Time Interactive Display

Environment, or RTIDE). Originally, this tool was to be a

programmers toolkit, allowing rapid development of hardcoded

displays. An internal survey was taken to determine requirements.

OPERATIONAL DESIGN CONSIDERATIONS

In general, the displays that RTIDE produced had to satisfy the

users. To support this broad guideline, specific requirements were

18



drawnup.

Theuser interface had to be intuitive, consistant, and reliable.

To reduce console clutter, the mousewaschosenas the primary input
device.

To reduce the chanceof flight controller confusion, all mouse
buttons had to be treated identically.

To reduce the possibility of selecting the wrongmouseableobject,
RTIDEhad to inform the user whenthe mousecursor wasover a object
(absolutely required, due to safety concerns).

RTIDEhad to allow the user to interrogate the display for
additional data.

RTIDEhad to provide a consistent methodof passing information to
the user.

RTIDEhad to showdata in a variety of ways: as a digital value with
highlighting whenlimits are exceeded;as a symbolic messagewhena
value is zero or nonzero; in graphical plot form; and in bar graph
form. All these had to makemaximumuse of color graphics.

RTIDEhad to be able to support display of dynamicschematics, with
lines and boxes driven by telemetry.

MAINTENANCE DESIGN CONSIDERATIONS

RTIDE was designed to provide a powerful user interface, but other

considerations had higher priority. RTIDE would be maintained by

flight controllers whose primary job was flight control, not

software and data file maintenance. Maintenance phase costs had to

be reduced to a minimum.

RTIDE displays had to be buildable by nonprogrammers. There were too

many displays to be done by the limited number of flight controller

programmers.

RTIDE had to be upwardly comparable with display definition files.

Having to change display definition files because of changes to

RTIDE is unacceptable.

RTIDE had to be easily expanded. Not only would this help the RTIDE

manager incrementally improve the system, but it helps other

disciplines who build graphical objects on their own.

RTIDE display definition files had to allow embedded comments. With

this, the documentation of a particular display can be included in

the display definition file. Then the file contains the entire

description of the display and no costly parallel documentation need
be maintained.

19



ORGANIZATIONAL DESIGN CONSIDERATIONS

Although RTIDE would be built and maintained by flight controllers,

the hardware RTIDE ran on and the data sources RTIDE used generally

were not. Consideration must be given to future changes to RTIDES

environment.

Multiple Data Sources

RTIDE had to be able to access different data sources. RTDS, an

internal MOD development system, was the original data source.

However, in 1990 the production Mission Control Center Upgrade

(MCCU) realtime data interface will become available, and will have

to be used.

In addition, a data retrieval system called Near Real Time (NRT)

already operates in the MCC workstations, and RTIDE should run off

of NRT data files. Besides providing a method of reviewing flight

events, this will assist in training flight controllers.

Hardware Independance

RTIDE had to be hardware independant. Currently the MCC is

transitioning from its five-year-old Masscomps to new models,

requiring software changes to many offline programs.

Configuration Management

Configuration management was a key factor in basic systems design of

RTIDE. Flight controllers do not have system manager authority over

the machines they use. RTIDE was designed to be as simple and robust

as possible, to increase reliability and to reduce the chance of

misconfiguration.

Time Constraint

RTIDE was started in 6/88, and had to be ready for STS-29, in 2/89.

RTIDE DESIGN

The basic structure had to be powerful enough to support any

reasonable improvement, and simple enough to be maintained by novice

programmers unfamiliar with RTIDE.

Organization

2O



Theemphasiswason simplicity. RTIDEis a single process, its
executable located in a single file, reducing the chanceof having
file permissions changedor files deleted. It also eliminates having
to have the workstation configured a particular way for interprocess
communication.RTIDEuses a single display definition file for each
display. All the documentationfor the display can be included in
the samedisplay definition file, eliminating the lag between
documentationand implementation.

Event Driven

RTIDEis event-driven. The user (by pressing a key or mousebutton,
or by movingthe mouse), the data sources (by supplying newdata),
or the operating system (by sending interrupts) mayall trigger
events that are detected by RTIDE.Event flags are either used
directly by RTIDEor sent to the object currently selected by the
user's mousecursor. Event types can be addedas desired.

Object Oriented

In the graphics sense, RTIDE is object-oriented. The dynamic symbols

on the screen driven by data are objects. RTIDE keeps track of which

object the mouse cursor is on, and sends event flags to the object

when appropriate.

The hard code determining each objects behavior consists of five

standard functions that are located in one source file (generally

500-1500 lines long). The behavior of an instance of an object is

determined by a data structure maintained by RTIDE. Adding new

objects can be done easily by building this file and adding a

structure definition to the master include file.

User Interface

The user interface is designed to be highly interactive, using the

mouse, and as simple as possible. Interaction is needed to request

further data from the display (limit sets, telemetry status, value

range, description, etc).

Display Definition File

The ASCII (for ease of maintenance) display definition file

specifies the display's initial condition. Each entry is a series of

arguments, each setting some variable (e.g., object colors,

messages, data source, etc.).

Program Execution

RTIDE begins by opening the display definition file and reading in

21



the entries there one at a time. Someentrys (screen size,
data source, etc) are used to configure RTIDE.The static graphics
entries are stored in case the screen is refreshed later. Object
entries are stored in the object list. Commentsare not currently
saved. RTIDEthen initializes the graphics processor, displays all
the objects, and falls into the main loop.

RTIDEmovesconstantly through a busy wait loop, first looking for
events, then reacting to them. Every cycle, RTIDEpausesfor less
than a tenth of second, allowing the CPUto run other processes.
Becausepressing a mousebutton interrupts this pause, a user can
increase RTIDESCPUusageby rapidly pressing the mousebuttons.

If newdata appearsat the interface (nominally, once a second),
RTIDEbegins to update the screen.

To minimize flicker, RTIDEdivides its screen update into two
seperate cycles, the process cycle and the display cycle. In the
process cycle, RTIDEgoes through the objects one at time (using
each objects process function), using the newdata to update the
object. If the object needsto be updated, a drawmeflag is set.
ThenRTIDEgoes through the display cycle, looking for draw me
flags. If one is set, RTIDEredrawsit using the objects draw
function.

Every cycle RTIDEpolls the mouseto find its location. RTIDE
comparesthe location with the information in its object list to see
if it has entered or left an object. RTIDE,once the mousecursor
enters an object, only looks to see if it has left the object. This
limitation prevents displays from using objects inside of objects.

Thecycling continues until an object (usually the exit object)forces RTIDEto exit.

FUTUREDEVELOPMENTS

RTIDE continues to be developed, with new objects being developed

for new applications. There is more emphasis being placed on

telemetry-driven schematics to increase the efficiency of displays.

Right now we are placing all the documentation into the display

definition file. That data is not retained by RTIDE. A later version

of RTIDE will save that information, so a user can click on an

object and see a complete description of what the measurement

displayed means.

SIMULATION PERFORMANCE

RTIDE was installed in the MCC console on 2/16/89. After a few weeks

to get the display definition files debugged, RTIDE provided high

quality displays for flight controllers. Flight controllers

particularly like to be able to get more information from the

22



display on request.

RTIDEwill support STS-29in Marchof 1989.

LESSONS LEARNED

Small Size

We found that running a display, its supporting algorithms, numerous

fault detection algorithms and several other realtime applications

does stress the machine. Keeping the display as efficient as

possible is necessary to allow the entire workstation to keep up

with the data. RTIDEs relative simplicity, originally specified for

other reasons, has kept its executable size down to 237Kb

(approximately 100Kb of which is the Masscomp graphics library).

Health and Status Messages

Experience has shown that it is vital to avoid misleading flight

controllers, and a display should do its part by telling the

controller when the data displayed is useable. The status should be

more than a simple GO/NOGO; it should give the controller enough

information to begin troubleshooting any data problem.

CONCLUSION

A user-friendly display-building tool has been developed. The

object-oriented approach allows rapid display building in realtime

command and control environments. The highly interactive user

interface allows the user to easily access additional data

describing the displays. This tool is being used in support of Space

Shuttle missions.

ACKNOWLEDGEMENTS

The author would like to thank Rich Rodriguez of NASA, for his

patience, encouragement, and support; John Muratore, for the

opportunity to work on the INCO Expert System Project; and Mike

Guzzo and Sarah Murray, for all the good work they've done on RTIDE.

REFERENCES

i. Muratore, October 1987, Trends in Space Shuttle Telemetry

Applications, Proceedings of the International Telemetering

Conference.

23




